Introduction to Petri Nets

Tiankuang Zhang (Ty) z5236826

Welcome Guys :D

- Part 1: Intuitive Understanding of Petri nets
- Part 2: Basic Concepts
- Part 3: Elementary system nets
- Part 4: Sth interesting if we have time

Part 1: Intuitive Understanding

Transition

4 Components

Part 1: Intuitive Understanding

Part 1: Intuitive Understanding

Part 1: Intuitive Understanding Marking = State

Part 1: Intuitive Understan ding

Vincent's Automated Counter Design

My Alternative design to this issue (without counter)

- Place: passive component
 - Store
 - Accumulate
 - Show

Not A STATE

- **Transition**: active component
 - Consume
 - Transport
 - Produce
 - Change

- Arc
 - Bipartite Graph
 - "Either an arc runs from a place to a transition or the other way around" (Wolfgang, 14)

Net Structure

•

- N = (P, T, F)
 - P: set of all places
 - T: set of all transitions
 - $F \subseteq (P \times T) \cup (T \times P)$

• $F \subseteq (P \times T) \cup (T \times P)$

- Pre-set and Post-set
 - In an unambiguously defined Net structure N, for a component x (place/transition) we can define
 - Pre-set of x: • $x =_{def} \{y \mid yFx\}$
 - Post-set of x: $x^{\bullet} =_{def} \{y \mid xFy\}.$
 - Loop: $x \in {}^{\bullet}y \text{ and } y \in {}^{\bullet}x$

• Marking

- Note:
 - All places must be considered.
 - Marking can be represented graphically. But not necessarily.

Initial marking

Distribute Cookie

- Multiset
 - Example: mixed kinds of tokens in a place.
 - $[\oplus \oplus \oplus \oplus \oplus]$
 - A multiset a is formally a mapping
 - a:U —> N

- Domain: Universe
 - Sufficiently Large
 - Collection of all examined tokens
- Codomain: Natural Number

- Multiset Example:
 - $U = \{ \bigoplus \ \bigcirc \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ \}$
 - R = [⊕ ⊕ ⊕ ⊡ ⊡ ⊡ •]
 - a(•••) = 2
 - a(⊕) = 3
 - a(●) = 1

- a(u) = 0 for any other u in U
 - a(3) = 0
 - a(2) = 0

- $\mathcal{M}(U)$: a set of all multisets over U
 - When U can be unambiguously identified, we write M(U)
 - Otherwise, we just write \mathcal{M} .

What about elementary system nets?
What is U?
What is M(U)?
Assume we allow at most one black
dot in one place,
do we still need the data structure multiset?

- Example: U = {
- 𝟸(U) = {[], [⊕], [⊡], [⊕⊕], [⊕⊕], [⊕⊕]
- A multiset a is finite if
 - $a(u) \neq 0$ for only finite number of $u \in U$.
 - +, -, \geq , \leq ,=

- Marking: with the help of multisets:
 M: P -> M(U)
 - M₀(coin slot) = [
 - a(•) = 1
 - M₀(cash box) = M₀(signal) = M₀(compartment)
 - a()=0

- M₀(storage) = [⊕ ⊕ ⊕ ⊕ ⊕]
 - a(⊕) = 5
- M₀(counter) = [5]

- System Net
 - Net structure + Initial Marking + Transition condition (labelling in transition) + Arc_labellings + cold_transition
- Reachability of Marking: reachability is not so different from reachability of states in process graph especially in part 3.

• Final Marking

QUESTION TIME

How many markings are there from the initial marking?

QUESTION TIME

What about now?

QUESTION TIME

What about now?

- Part1, Part2: Generic System Nets
- Part3: Elementary System Nets

- 2 Difference
 - Abstract Black Dot Token ONLY
 - No labelling: default is

$$M'(p) = \begin{cases} M(p) - 1 & \text{if } p \in {}^{\bullet}t \text{ and } p \notin t^{\bullet} \\ M(p) + 1 & \text{if } p \in t^{\bullet} \text{ and } p \notin {}^{\bullet}t \\ M(p) & \text{otherwise} \end{cases}$$

Step Rule

$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \ldots \xrightarrow{t_n} M_n$$

(Wolfgang, 26)

More...

- Labelling (Generic System Nets)
- Petri Net modelling ME
- Code and Hot Transition
- Petri Net Modelling Relay Race
- Petri Net modelling Vivian_reading_books_unless_rain
- Some interesting design in cookie vending machine

Labelling of Arcs

• "Represent the tokens that flow through the arc <u>at the occurrence</u> <u>of transition." (Wolfgang, 16)</u>

 \overline{pt} or \overline{tp}

- <u>NOT REAL TOKENs</u>
 - Constant
 - Variable/Function

- Labelling of Transitions
 - Condition with variable.
 - Evaluated to True or False

Models ME using elementary system nets. Find sth wrong here?

Relay Race: Process Graph

Relay Race: Elementary System Nets

Relay Race: Generic System Nets

Models Vivian's Read_book_unless_rainy days

Links to recordings

References

Reisig, Wolfgang. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies. Berlin, Heidelberg: Springer Berlin Heidelberg: Imprint: Springer, 2013. Print.

Thank you!

